
Chapter 17: Functional Programming in Java

🔰 Introduction

With the introduction of Java 8, functional programming became an integral part of Java
through features like lambda expressions, functional interfaces, Streams API, and
method references. This paradigm shift allowed Java developers to write more concise,
expressive, and parallelizable code. Functional programming treats computation as the
evaluation of mathematical functions and avoids changing state and mutable data.

In this chapter, we'll explore functional programming in Java, covering key concepts,
syntax, and practical applications.

📘 Table of Contents
1. What is Functional Programming?

2. Functional Interfaces

3. Lambda Expressions

4. Method References

5. Built-in Functional Interfaces in java.util.function

6. Stream API and Functional Operations

7. Optional Class

8. Functional Programming vs OOP in Java

9. Best Practices

10. Use Cases and Real-world Applications

1. What is Functional Programming?

Functional Programming (FP) is a declarative programming paradigm where functions are
treated as first-class citizens.

✅ Key Principles:
• Immutability: Data cannot be changed after it's created.

• First-class Functions: Functions can be passed as arguments and returned as
values.

• No Side Effects: Functions produce the same output for the same input without
modifying any external state.

• Pure Functions: A function that has no side effects and returns the same output for
the same input.

2. Functional Interfaces

A functional interface is an interface with only one abstract method. It can have multiple
default or static methods.

🔸 Syntax:
javaCopy code@FunctionalInterface
interface MyFunctionalInterface {
 void execute();
}

You can use this interface with lambda expressions or method references.

🔸 Examples of Predefined Functional Interfaces:
• Runnable

• Callable

• Comparator

• ActionListener

3. Lambda Expressions

Lambda expressions provide a clear and concise way to represent a functional interface.

🔸 Syntax:
javaCopy code(parameters) -> expression

🔸 Example:
javaCopy codeMyFunctionalInterface mfi = () -> System.out.println("Hello Func
tional World!");
mfi.execute();

🔸 With Parameters:
javaCopy codeBinaryOperator<Integer> adder = (a, b) -> a + b;
System.out.println(adder.apply(10, 20)); // Output: 30

4. Method References

Method references provide a shorthand for calling methods using the :: operator.

🔸 Types of Method References:
• Static method: ClassName::staticMethod

• Instance method: object::instanceMethod

• Constructor: ClassName::new

🔸 Example:
javaCopy codeList<String> list = Arrays.asList("Java", "Python", "C++");
list.forEach(System.out::println);

5. Built-in Functional Interfaces in java.util.function

Java 8 provides several ready-to-use functional interfaces in the java.util.function
package.

Interface Description Example

Predicate<T> boolean-valued function of one argument (x) -> x > 10

Function<T, R> function from T to R (s) -> s.length()

Consumer<T> performs an operation on a single input System.out::println

Supplier<T> supplies a result of type T () -> "Hello"

UnaryOperator<T> unary operation on a type T x -> x * 2

BinaryOperator<T> binary operation on two values of type T (a, b) -> a + b

6. Stream API and Functional Operations

The Stream API allows processing collections in a functional style.

🔸 Stream Creation:
javaCopy codeList<String> names = Arrays.asList("John", "Jane", "Jack");
Stream<String> stream = names.stream();

🔸 Common Functional Operations:
• map(): transform data

• filter(): filter data based on a condition

• forEach(): apply action to each element

• reduce(): reduce to a single result

• collect(): collect elements into a container (e.g., List)

🔸 Example:
javaCopy codeList<String> names = Arrays.asList("John", "Jane", "Jack");
names.stream()
 .filter(name -> name.startsWith("J"))
 .map(String::toUpperCase)
 .forEach(System.out::println);

7. Optional Class

Optional<T> is a container object which may or may not contain a non-null value. It helps
avoid NullPointerException.

🔸 Example:
javaCopy codeOptional<String> name = Optional.ofNullable(getName());
name.ifPresent(System.out::println);

8. Functional Programming vs Object-Oriented Programming
Aspect Functional Programming OOP

Data Mutability Immutable Mutable

Function Type First-class citizen Bound to objects

State Stateless (pure) Stateful

Aspect Functional Programming OOP

Reusability High via functions High via classes

Parallelism Easier with stateless More complex

9. Best Practices
• Use lambda expressions for short, inline implementations.

• Prefer method references when lambda just calls a method.

• Use Optional to handle nullable return types.

• Leverage Streams for processing collections.

• Avoid side-effects in functional operations.

• Keep functions pure and stateless whenever possible.

10. Use Cases and Real-World Applications
• Data transformation pipelines with Streams.

• Event handling in GUI applications using lambda expressions.

• Filtering and sorting large datasets.

• Reactive programming models in web applications.

• Concurrency-friendly code due to immutability.

✅ Summary

Functional Programming in Java enhances code readability, maintainability, and parallel
execution. With features like lambda expressions, method references, Streams, and built-
in functional interfaces, Java enables a more expressive and concise style of programming.
Understanding and applying functional principles effectively helps developers write
cleaner and more efficient code in modern Java applications.

	Chapter 17: Functional Programming in Java
	🔰 Introduction
	📘 Table of Contents
	1. What is Functional Programming?
	✅ Key Principles:

	2. Functional Interfaces
	🔸 Syntax:
	🔸 Examples of Predefined Functional Interfaces:

	3. Lambda Expressions
	🔸 Syntax:
	🔸 Example:
	🔸 With Parameters:

	4. Method References
	🔸 Types of Method References:
	🔸 Example:

	5. Built-in Functional Interfaces in java.util.function
	6. Stream API and Functional Operations
	🔸 Stream Creation:
	🔸 Common Functional Operations:
	🔸 Example:

	7. Optional Class
	🔸 Example:

	8. Functional Programming vs Object-Oriented Programming
	9. Best Practices
	10. Use Cases and Real-World Applications
	✅ Summary

